Assignment 5

String Processing

Introduction

In this assignment we will develop a program that will read a letter grade with an optional +
or - and output the grade-point equivalent. For example, if the input is B+, then the output
should be 3.3, i.e., 3.0 + 0.3, and the input C- would produce 1.7, i.e., 2.0 - 0.3.

Reading the Letter Grade

The letter grade will consist of one or two characters: a letter, optionally followed by + or
-. System call 8 will read a string into a buffer, but we must first create the buffer. To do
this, we will use dynamic allocation of memory, the equivalent of using the new operator in
C++. System call 9 will allocate memory from the heap.

In MARS, read the note about system call 8:

For specified length n, string can be no longer than n-1. If less than that, adds
newline to end. In either case, then pads with null byte. If n = 1, input is ignored
and null byte placed at buffer address.

Got it? We intend to enter one or two characters. If we set n = 3, then the buffer will
be padded with a null byte (?\0’), but not necessarily with a newline byte (*\n’). If we set
n = 4, then both one- and two-character input will be padded with a newline followed by a
null character, so we can count on finding the newline at the end of the grade.

Be sure to save the returned address, as it is the base address of the string, which is an
array of one-byte characters.

Computing the Grade-Point Equivalent of the Letter

The grade point equivalent of A is 4.0. As explained in the previous assignment, there is no
load-immediate instruction for floating-point numbers. So we must declare 4.0 in the .data

1



section and give it a name (four) and a type (.float) and then use the load-single (1.s)
instruction to load it into a floating-point register.

I suggest that you use the following strategy. Also create the floating-point constant 1.0.
Initialize the grade-point value as 4.0. Then compare the first input character to *A’. If it
matches, you are done. If it does not match, then subtract 1.0 from the grade-point value
and compare the input character to *B’. Continue in this manner until you have compared
to 'F’.

Computing the Grade-Point Equivalent of the + or -

The second byte of the input buffer should be either >+’ >=> or >\n’. Create the floating-
point constant 0.3. If the second input character is >+’ then add 0.3 to the grade-point
value. If it is >=’, then subtract 0. 3.

To keep the assignment “simple,” we will allow grades of F+ and F-, with grade-point
equivalents of 0.3 and -0.3. If you are feeling adventurous, you may add code that will
disallow those grades.

Now you may output the grade-point equivalent, properly annotated.

Error Conditions

You should test for three possible errors:
e The first input character was not one of ’A’, ’B?, °C’, ’D’, or ’F’.
e The second character in the buffer was not one of *+?, >=? or ’\n’.
e More than two characters were entered.

If any of those error conditions occurs, output the message ¢ ‘Invalid input.’’

Due Date

Name the program grade_point.asm and drop it in the dropbox. It is due by midnight,
Wednesday, September 18.



